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Abstract

This paper examines the application of optimization and control ideas to the formulation of feature-preserving
numerical methods, with particular emphasis on the conservative and bound-preserving remap (constrained
interpolation) and transport (advection) of a single scalar quantity. We present a general optimization
framework for the preservation of physical properties and relate the recently introduced flux-variable flux-
target (FVFT) [1] and mass-variable mass-target (MVMT) [2] optimization-based remap (OBR) to this
framework. Both cast remap as a quadratic program whose optimal solution minimizes the distance to a
suitable target quantity, subject to a system of linear inequality constraints. An approximation of an exact
mass update operator defines the target quantity, which provides the best possible accuracy of the new
masses without regard to any physical constraints such as conservation of mass or local bounds. The latter
are enforced by the system of linear inequalities. In so doing, OBR separates accuracy considerations from
the enforcement of the physical properties. We follow with a formal examination of the relationship between
the FVFT and MVMT formulations. Using an intermediate flux-variable mass-target (FVMT) formulation
we show the equivalence of their optimal solutions.

To underscore the scope and the versatility of the OBR approach we introduce the notion of adaptable
targets, i.e., target quantities that reflect local solution properties, extend FVFT and MVMT to remap on
the sphere, and use OBR to formulate adaptable, conservative and bound-preserving optimization-based
transport algorithms, both in Rd and on the sphere. A selection of representative numerical examples
demonstrates the computational properties of our approach.
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1. Introduction

Fundamental physical properties of natural phenomena give rise to the salient analytical properties of
their mathematical models. However, the discretization of these models can cause the loss of key mathemat-
ical relationships, potentially leading to ill-posed discrete equations, the emergence of spurious modes, or
physically impossible solutions. Coupled multiphysics simulations, where the output from one constituent
component provides the input to another component, can further exacerbate the loss of structural and qual-
itative information in the discrete model. There, an unphysical solution from one component can cause a
cascading breakdown of the subsequent components and compromise the whole simulation.

Thanks to extensive research efforts over the past 20 years it is now well understood that a discrete
“vector calculus” setting, i.e., discrete spaces and operators that mimic basic vector calculus properties such
as the Poincare lemma, the Gauss divergence theorem and the Stokes circulation theorem, enables structure-
preserving discretizations of a large class of Partial Differential Equations (PDEs); see [3, 4, 5, 6, 7] and the
references therein.

However, advances in structure-preserving numerical methods stand in sharp contrast with the limited
mathematical and algorithmic understanding of feature-preserving discretizations, i.e., discretizations that
reproduce qualitative properties of the exact solutions, such as local bounds, maximum principles, and sym-
metries, to name a few. The root cause for this imbalance is that such properties emerge from the interplay
of function space structures with differential and boundary operators, i.e., they are model specific, whereas
the given functional space structures can be shared by multiple mathematical models. For instance, the same
discrete vector calculus setting can support the structure-preserving discretization of models ranging from
pure diffusion to conservation laws, yet the unique qualitative properties of the models at each extreme, such
as the maximum principle and local bounds are not guaranteed to emerge automatically from that setting.

The fluid nature of the qualitative properties makes it difficult to enforce them directly in the discretiza-
tion process, that is by relying solely on the mesh structure and the discrete variables. As a rule, this
strategy ties together the preservation of the desired features with geometric conditions on the mesh and/or
restrictions on the accuracy. A typical example is the discrete maximum principle (DMP) for the Poison
equation, which requires a monotone, or M -stiffness matrix. To ensure this property on triangular elements
the sum of the two angles opposing each interior edge should be less than π, and the polynomial degree
should be 1 [8, 9, 10]. An extension of DMP to more general triangular or quadrilateral meshes requires
nonlinear modifications of the governing equations such as the nonlinear stabilized finite element method for
the Poisson equation [11, 12], the nonlinear extension of the diamond scheme [13], and the nonlinear finite
volume scheme in [14].

High-order maximum-principle satisfying and positivity preserving schemes for conservation laws exist
in one dimension [15], or on rectangular meshes [16, 17]. An extension of these schemes even to triangular
elements is highly nontrivial [18]. A similar interdependence between mesh, accuracy and preservation of
a physical property exists in many of the slope and flux limiters in use today. As a result, many of them
do not preserve linear functions on irregular meshes [19], which impacts accuracy and robustness. This
interdependence is propagated to any algorithm that employs limiters such as advection-based remappers
in Arbitrary Lagrangian Eulerian (ALE) methods [20].

This paper draws upon and continues our previous efforts to develop an alternative, optimization-based
divide-and-conquer strategy [21, 22, 23, 24] for the formulation of stable, accurate and physically consistent
discretizations. Specifically, here we focus on the application of optimization and control ideas to separate
stability and accuracy considerations from the enforcement of the desired physical properties. In a nutshell,
given a mathematical model and a list of desirable physical properties, our approach seeks the corresponding
discrete model in the form of a constrained optimization problem in which

• the objective is to minimize the distance, measured in some suitable norm, between the discrete
solution and a given target solution;

• a discrete model that is stable and accurate but is not expected to posses all desired physical properties
defines the target solution;
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• the optimization constraints enforce any desired physical properties that are not already present in
the target solution.

This strategy offers a number of important theoretical and computational advantages in the formulation of
feature-preserving numerical methods:

• the numerical solution is a global optimal solution from a feasible set defined by the desired physical
properties, i.e., it is always the best possible, with respect to the target, approximate solution that
also possesses these physical properties;

• the decoupling of the target definition from the preservation of the physical properties allows to adapt
the numerical solution to different problems by choosing the most appropriate target definition and
objective function for these problems;

• the enforcement of the desired properties as optimization constraints is impervious to the mesh struc-
ture and/or field representations, thereby enabling feature-preserving methods on arbitrary unstruc-
tured meshes, including polygonal and polyhedral meshes.

The present work applies the optimization-based strategy to the high-order accurate and feature-preserving
remap (constrained interpolation) and transport (advection) of a single scalar conserved quantity (”mass”).
The features that we aim to preserve through the use of optimization are (a) the conservation of total mass
and (b) physically motivated local bounds on the primitive variable (the density). The remap task arises in
Arbitrary Lagrangian-Eulerian (ALE) methods, where high-order remapping between meshes is critical for
the accuracy of the simulation, especially in conjunction with a continuous rezone approach, which requires
remapping at every time step [25, 26]. The second task, i.e., the stable, accurate and feature-preserving
solution of transport equations on general unstructured meshes, remains one of the most challenging nu-
merical problems. Our work exploits the intrinsic connection between transport and incremental remapping
[27, 28, 29] to extend the optimization-based remap to conservative, linearity and local bounds preserving
transport algorithms.

It should be noted that optimization ideas also motivate the Flux-Corrected Remap (FCR) [30] al-
though FCR itself is algorithmically not an optimization-based remap. Nonetheless, the ideas outlined in
[30] prompted the development of bona fide optimization-based formulations of remap [1, 24, 2]. The paper
[1] also examines the relationship between such formulations and FCR, showing that FCR admits inter-
pretation as an approximate solution algorithm for an optimization-based remap problem. Elements of an
optimization-based approach can be found in one form or another in some recent work on the optimization-
based preservation of DMP [31, 32, 33, 34].

The paper starts with a brief summary of the basic ideas of the optimization-based approach for feature-
preserving discretizations in Section 2. Section 3 introduces the relevant notation and background results,
and defines the remap problem we seek to solve. Section 4 specializes the abstract framework into a generic
optimization-based remap (OBR) formulation and then examines two instances of OBR corresponding to the
recent flux-variable flux-target (FVFT) [1], and mass-variable mass-target (MVMT) [2] methods. We also
introduce an intermediate flux-variable mass-target (FVMT) formulation, which bridges FVFT and MVMT.
Section 5 studies the theoretical properties of the OBR formulations, whereas Section 6 demonstrates the
versatility of OBR by introducing the notion of adaptable targets, and specializing OBR to spherical geometry
and extending it to feature-preserving, optimization-based transport (OBT). Section 7 contains represen-
tative numerical results that illustrate the accuracy, efficiency and versatility of the optimization-based
approach. Section 8 summarizes our conclusions.

2. Optimization-based approach for feature-preserving discretizations

This section briefly discusses an abstract optimization-based framework for feature-preserving discretiza-
tions. The setting follows and specializes the ideas explored in [22, 23, 1]. We study the approximate
numerical solution of the abstract operator equation: find u ∈ X such that

L(u) = f in Y , (2.1)
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where X and Y are two Banach spaces, L : X 7→ Y is a given operator, and f ∈ Y is the given data. The
main objective is to preserve the properties of the exact solution and the operator that are deemed essential
for predictive simulations. We make the following assumptions about our abstract problem:

A.1 There exist subsets U ⊆ X and V ⊆ Y such that for any f ∈ V the solution of (2.1) satisfies u ∈ U .
A.2 There are discrete spaces Xh and Yh, parametrized by h > 0, and a sequence of discrete operators

Lh : Xh 7→ Yh such that the discrete problem Lh(uh) = fh has a unique solution for all h > 0, and, if
fh → f , then uh → u.

The first assumption is a formal statement of the intrinsic physical properties (maximum principle, positivity,
local bounds, etc.) of the governing operator and the exact solution of (2.1). The second assumption implies
that the abstract problem can be discretized and solved in a stable and accurate manner. However, there
is no assumption that the discrete solutions uh ∈ U , nor is it assumed that fh ∈ V , i.e., the discretized
problems are not required to preserve the intrinsic physical properties of the original problem.

Optimization-based modeling is a divide and conquer strategy for the preservation of physical properties,
which relieves the design of the discrete spaces and operators from that task and assigns it to a reformulation
of (2.1) into a suitable constrained optimization problem. In so doing our approach allows to separate the ac-
curacy considerations, which are addressed by the discretization spaces and operators, from the enforcement
of the physical properties, which are addressed by the optimization formulation.

To explain the main idea, assume for simplicity a conforming approximation setting in which Xh ⊂ X,
Yh ⊂ Y , Uh = U ∩ Xh, and Vh = V ∩ Yh. The choice of Lh, Xh, and Yh is governed solely by accuracy
considerations and we do not require that the solution of the discrete problem Lh(uh) = fh satisfies uh ∈ Uh

nor do we assume that fh ∈ Vh. Instead, we view the solution of the discrete problem as an optimization
target uTh := uh and introduce a separate discrete variable ûh, which is constrained to have the desired
physical properties, i.e., ûh ∈ Uh and Lh(ûh) ∈ Vh. We seek the approximate numerical solution of (2.1) by
minimizing the distance, in some normed space W , between ûh and the target, subject to these constraints,
i.e., as a solution of the constrained optimization problem{

minimize J(ûh;uTh) := 1
2‖ûh − u

T
h‖2W subject to

Lh(uTh) = fh ; ûh ∈ Uh ; and Lh(ûh) ∈ Vh .
(2.2)

In the optimization and control theory this setting is sometimes referred to as the “tracking problem”. By
solving (2.2) we find the best possible, with respect to the given target uTh , approximate solution of (2.1),
which also possesses the desired physical properties.

The decoupling of the target definition from the task of preserving the physical properties is the hallmark
of the optimization approach. Because stability and accuracy are the only requirements for the numerical
scheme that defines the target, we can use freely adaptive procedures to resolve regions where the solution
experiences rapid change, such as boundary or internal layers. Similarly, if the solution or its derivatives
have discontinuities across an interface, the target can be modified to better capture this behavior by using,
e.g., discontinuous spaces. Since the preservation of features is not a factor in the definition of the target,
the process of adapting the target to the solution can be substantially simplified. In other words, by not
requiring the target to be feasible for the optimization problem we significantly simplify the process of
selecting a target.

Following a formal statement of the remap problem in Section 3, we specialize (2.2) to a generic feature-
preserving optimization-based remap (OBR) algorithm in Section 4 and introduce three specific instances
of OBR.

3. Notation, technical background and statement of the remap problem

Let Ω be a polyhedral domain in Rd, d = 1, 2, 3, with boundary Γ = ∂Ω. We assume that Ω is endowed
with two mesh partitions, C(Ω) and C̃(Ω), respectively. We refer to C(Ω) to as the “old” or ”Lagrangian”

mesh, and to C̃(Ω) as the “new” or “rezoned” mesh, respectively2.

2This terminology originates with Arbitrary Lagrangian Eulerian methods.
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3.1. Mesh entities

This section introduces entities and quantities on the old and the new meshes that are relevant to the
formulation of the optimization-based remap. The cells ci, i = 1, . . . , C, of the old mesh C(Ω) are d-
dimensional closed polytopes3 defined by a finite number of vertices. The set of all distinct vertices vi in
the mesh is denoted by V (Ω) and V = |V (Ω)| is its cardinality. Both convex and non-convex polytopes
are admissible as cells. Some methods, such as AMR [35], involve cells with “hanging nodes”. We treat
these cells as polytopes defined by the totality of their nodes, i.e., a quadrilateral with one hanging node is
a pentagon.

The boundary of ci ∈ C(Ω) is a union of d − 1 dimensional polytopes, called “sides” or “facets” of the
cell. We assume that C(Ω) is a conforming partition in the following sense [36, p.51]: any side s of any cell
ci ∈ C(Ω) is either a subset of the boundary Γ, or a side of another cell cj ∈ C(Ω). The set of all distinct
sides si in the mesh is S(Ω) and its cardinality is S = |S(Ω)|.

We assume that the new mesh C̃(Ω) has the same connectivity as C(Ω). Therefore, C̃(Ω) is also a
conforming partition. The entities and the quantities on the new mesh will have a tilde accent, whereas the
entities and the quantities on C(Ω) will have no accent. For instance, c̃i, s̃j and ṽk denote a cell, side and

a vertex on the new mesh. However, because C̃(Ω) and C(Ω) have the same connectivity, the cardinalities

of C̃(Ω), S̃(Ω) and Ṽ (Ω), match those of C(Ω), S(Ω) and V (Ω), respectively, i.e., C̃ = C, S̃ = S and

Ṽ = V . Furthermore, without loss of generality we may assume that the entities in C̃(Ω), S̃(Ω) and Ṽ (Ω)
are ordered in the same way as their Lagrangian prototypes. In other words, the Lagrangian prototypes of
c̃i, s̃j and ṽk are ci, sj and vk, respectively.

For reasons that will be explained later, we assume that the positions of the boundary vertices in the old
and the new meshes are subject to the following two restrictions. First, the vertices defining the polyhedral
domain Ω belong to both the old and the new mesh partitions. Second, if the new vertex ṽi ∈ Γ, then its
Lagrangian prototype vi ∈ Γ, and both ṽi and vi belong to the same polyhedral part of Γ.

Beside the entities on the old and the new mesh we need some additional entities defined by the movement
of the old sides into their new positions. Specifically, the swept region ri, associated with a side si ∈ S(Ω), is

the polytope swept by si as it transforms into a side s̃i ∈ S̃(Ω). Note that the assumption on the positions of
the boundary vertices in the old and the new mesh implies that any swept region associated with a boundary
side has an empty interior.

The sets of all vertices, sides and cells in an entity E are V (E ), S(E ) and C(E ), respectively. For instance,
S(ci) are the sides of an old cell ci, V (c̃i) are the vertices of a new cell c̃i, and S(Γ) are the sides of the old
mesh that are subsets of the domain’s boundary. The neighborhood N(ci) of ci includes the cell ci itself
and all cells that have a non-empty intersection with ci. The side neighborhood NS(ci) comprises of ci and
all cells that share a side with ci. The strict neighborhoods are N ′(ci) = N(ci) \ ci and N ′S(ci) = N(ci) \ ci.
Note that |N ′S(ci)| = |S(ci)|, that is the number of cells in the strict side neighborhood of ci equals the
number of sides in ci. Figure 1 shows an example of N(ci), N

′(ci), and NS(ci) in two dimensions. We

assume that C̃(Ω) satisfies the locality condition

c̃i ⊂ N(ci), for all i = 1, . . . , C , (3.1)

which makes precise the assumption that C(Ω) and C̃(Ω) are “close”.

Suppose that F and F̃ are some collections of old and new mesh entities, respectively. The notation
i ∈ F , i ∈ F̃ means that the index i runs over the collection of entity indices in F , resp. F̃ . For instance,
j ∈ N(ci) indicates that j loops over the cells in the neighborhood of ci, whereas k ∈ S(ci) means that k
loops over the sides of ci.

Lowercase letters with subscripts denote various scalar entities and quantities, whereas the same letter
without the subscript denotes the corresponding vector of values. For example, s̃i is a side in the new mesh,
whereas s̃ is the vector of all sides in C̃(Ω). Similarly, if mi is the mass on the old cell ci, then m is a vector
of all cell masses.

3For instance, in two dimensions ci can be triangles, quadrilaterals or polygons (2-polytopes), whereas in three dimensions
the admissible cells are tetrahedrons, hexahedrons or polyhedrons (3-polytopes).
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ci! ci! ci!

N(ci) N ′(ci) NS(ci)

Figure 1: Lagrangian cell ci, the neighborhood N(ci), the strict neighborhood N ′(ci), and the side neighborhood NS(ci).

3.2. Mesh spaces

It is convenient to think of the quantities involved in the remap problem as elements of approximation
spaces defined on the old and the new meshes, and associated with specific mesh entities. The space Ch is
the piecewise constant space defined with respect to the cells in the old mesh C(Ω) and Ch0 is its “zero-mean”
subspace:

Ch0 =
{
u ∈ Ch |

C∑
i=1

ui = 0
}
.

The analogues of these spaces on the new mesh are C̃h and C̃h0 , respectively. The elements of these spaces
are vectors in RC , indexed by a cell number. The value of each entry represents a cell-centered quantity
such as the mean cell value of a given function.

The space Sh is a piecewise constant space defined with respect to the sides S(Ω) on the old mesh, and
Sh0 is the subspace of all elements in Sh that satisfy a homogeneous “boundary condition”

Sh0 =
{
u ∈ Sh |ui = 0 ∀i ∈ S(Γ)

}
,

i.e., their values associated with boundary sides are zero. The new mesh analogues of these spaces are S̃h

and S̃h0 , respectively. The elements of Sh and S̃h are vectors in RS , indexed by a side number. Their
entries are side-centered quantities associated with the sides, such as fluxes through the sides or integrals of
functions over the swept regions.

We endow Ch and Sh with the standard Euclidean inner product and norm, that is,

‖u‖C =
( C∑
i=1

u2
i

)1/2

∀u ∈ Ch and ‖v‖S =
( S∑
i=1

v2
i

)1/2

∀v ∈ Sh , (3.2)

respectively.

3.3. Mesh entity orientations and measures

Computation of quantities relevant to the remap requires orientations of cells, sides and swept regions,
as well as a notion of a signed measure of a domain. For clarity, we explain the orientation choices in
two-dimensions.

The direction of the unit normal to the boundary of a cell specifies the orientation of that cell. Let nci
and ñci denote the outer unit normals to ci ∈ C(Ω) and c̃i ∈ C̃(Ω), respectively. We use these unit normals
to orient the cells in the old and the new mesh; see the left pane in Figure 2. The direction of the unit
normal to a side orients the side. If a side ck belongs to ∂Ω, we use the outer normal to ∂Ω. On the other
hand, if a side ck is in the interior, i.e., sk = ci ∩ cj for some cells ci and cj , we choose its unit normal nsk
according to the following rule:

nsk =

{
nci if i < j

ncj if i > j .
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Figure 2: Example orientations in two dimensions. The cells are oriented by the outer unit normal to their boundary (left
pane). Sides are oriented by the outer unit normal of the cell with the smaller index (center pane). The blue ovals are the signs
of the non-zero entries in the row of the side-to-cell incidence matrix (3.4) corresponding to c5. Swept regions are oriented by
the unit tangent for which {tsk,n

s
k} is positively oriented (right pane). The combination of the signs in the blue ovals and the

orientations of the swept regions illustrates formula (3.10).

The center pane in Figure 2 illustrates this rule. For example, the side s9 = c2 ∩ c5 is oriented by the outer
normal to c2, whereas s13 = c5 ∩ c6 is oriented by the outer normal to c5. This rule applies to both the old
and the new sides.

In two dimensions we need to compute contour integrals over the swept regions. The orientations of the
swept regions require the selection of unit tangents on their boundaries. Suppose that rk is the swept region
corresponding to the side sk and nsk is the unit normal that specifies the side’s orientation. We orient rk
using the unit tangent tsk for which the pair {tsk,nsk} is positively oriented, that is, det([tsk,n

s
k]) = 1. The

right pane in Figure 2 shows the orientations of the swept regions formed by the movement of the sides of
cell c5 into their new positions in c̃5.

The unsigned measure of a set D is

µ(D) =

∫
D

dV .

The reduction of the volume integral to an integral over an oriented surface defines the signed measure
µ?(D) of the set. For instance, in two-dimensions, the Green’s Theorem implies that∫

D

dxdy =

∫
∂D

xdy = −
∫
∂D

ydx .

The specification of an orientation on ∂D yields the signed measure µ?(D). We recall the barycenter formula
for the old and the new cells

bj =

∫
cj

x dV

µ(cj)
, and b̃j =

∫
c̃j

x dV

µ̃(cj)
, (3.3)

where x is the position vector in Rd.

3.4. The side-to-cell incidence matrix

The side-to-cell incidence matrix D for C(Ω) is a C × S matrix with entries Dij ∈ {0,−1, 1} such that

Dij =


0 if sj /∈ S(ci)

1 if sj ∈ S(ci) and nsj = nci

−1 if sj ∈ S(ci) and nsj = −nci

. (3.4)

In other words, the value of Dij indicates whether or not the side sj belongs to the cell ci, and if it does –
the direction of its normal nsj relative to the outer normal on ci. The blue ovals in Figure 2 illustrate this
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rule. The entries of D depend only on the mesh topology and not on the shape of the cells themselves. As a
result, D̃ = D. In algebraic topology the matrix D represents the coboundary operator acting on 2-cochains.
This operator gives rise to compatible discretizations of the divergence [37], [38] in numerical methods for
PDEs. The connection between D and the divergence is responsible for many interesting properties of this
matrix. A summary of the properties relevant to remap follows. Proofs of some of these properties rely on
fundamental results from algebraic topology and exterior calculus and are beyond the scope of this paper.
We refer to [5, 38, 37, 39] and the references therein for further details.

Full row rank property. The matrix D has full row rank. This property follows from the fact that the non
zero elements in the ith row of D correspond to the sides that belong to the boundary of the ith cell in the
mesh. Suppose that two rows are linearly dependent. This would imply that the boundaries of two distinct
cells comprise of exactly the same sides, which is impossible, as two cells share at most a single side.

Surjective property. Considered as a mapping Sh0 7→ Ch0 , the matrix D is a surjection:4

∀m ∈ Ch0 ∃um ∈ Sh0 such that m = Dum . (3.5)

It is easy to see that the range of D is a subset of Ch0 , i.e.,

C∑
i=1

(Du)i = 0 ∀u ∈ Sh0 . (3.6)

Indeed, all entries of u ∈ Sh0 associated with the boundary sides equal zero and contribute nothing to the
sum. On the other hand, if an entry uj of u corresponds to an interior side sj , this side is shared by exactly
two cells, and the corresponding column of D has exactly two nonzero entries. Because the orientation of
sj matches the orientation of one of the cells and is opposite the orientation of the other cells, the column
entries are +1 and −1, respectively. Therefore, every element uj associated with interior sides enters the sum
in (3.6) exactly twice with opposite signs. The proof of the converse, i.e., that any “zero-mean” cell-centered
quantity m ∈ Ch0 is an image, under the action of D, of a side-centered quantity u ∈ Sh0 with homogeneous
“boundary condition”, follows from the full row rank property of D.

Null space. The matrix D has a nontrivial null space, kerD, in Rd, d = 1, 2, 3. For example, in three
dimensions the columns of the edge-to-side incidence matrix C span kerD, i.e., DC = 0.5

Orthogonal decomposition of Sh0 . The space Sh0 admits an orthogonal decomposition that mimics the prop-
erties of the classical Hodge decomposition of vector fields. Specifically, we have that

Sh0 = kerD⊕ kerD⊥ , (3.7)

see [38], i.e., every element u ∈ Sh0 has the form u = u0 + u⊥, where u0 ∈ kerD and u⊥ ∈ kerD⊥,
the orthogonal complement. In addition, a discrete Poincare-Friedrichs inequality holds on the null-space
complement: under some assumptions on the shape of the mesh cells, there is a positive constant K, which
is independent of the mesh size, such that

‖u⊥‖S ≤ K‖Du‖C ∀u⊥ ∈ kerD⊥ . (3.8)

The same properties hold on S̃h0 .

4This property is a discrete version of the surjective property of the divergence operator as a mapping H0(div,Ω) 7→ L2
0(Ω).

5In algebraic topology C is the coboundary operator acting on 1-cochains. This operator gives rise to the discretization
of the curl operator in compatible discretization methods for PDEs [38]. The property DC = 0 mimics the vector calculus
identity div curlu = 0.
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Boundary and measure representations. For any cell ci there holds6

∂ci =
∑

j∈S(ci)

Dijsj . (3.9)

Property (3.9) holds on the new mesh as well. Using the vector notation formula (3.9) assumes the compact
form ∂c = Ds. Using the relationship (3.9) one can show that with the orientation choices in Section 3.3

µ(c̃i) = µ(ci) +
∑

j∈S(ci)

Dijµ
?(rj) . (3.10)

We can write (3.10) in a compact matrix form as

µ(c̃) = µ(c) + Dµ?(r) .

Note that the assumptions on the positions of the boundary vertices imply that µ?(r) ∈ Sh0 , which, in
conjunction with the surjective property of D implies that Dµ?(r) ∈ Ch0 . Therefore,

C∑
i=1

µ(c̃i) =

C∑
i=1

(
µ(ci) + (Dµ?(r))i

)
=

C∑
i=1

µ(ci) ,

which is simply a statement of the fact that the measure of the computational domain does not depend on
the mesh. This property motivates the restrictions on the positions of the boundary nodes, stated earlier.

3.5. Statement of the mass-density remap problem

We state the mass-density remap problem following [25, 30]. The primitive variable (density) is a scalar
function ρ(x) > 0 on Ω and the conserved variable is the total mass

M =

∫
Ω

ρ(x)dV .

The cell masses and the mass densities on the old mesh are

mi =

∫
ci

ρ(x)dV and ρi =

∫
ci

ρ(x)dV

µ(ci)
, i = 1, 2, . . . , C , (3.11)

respectively. Therefore,

mi = ρiµ(ci) , ρi =
mi

µ(ci)
and M =

C∑
i=1

ρiµ(ci) .

For every old cell ci we define

ρmin
i =


min

j∈N(ci)
{ρj} if ci ∩ ∂Ω = ∅

min

{
min

j∈N(ci)
{ρj}, min

x∈N(ci)∩∂Ω
ρ(x)

}
if ci ∩ ∂Ω 6= ∅

, (3.12)

ρmax
i =


max
j∈N(ci)

{ρj} if ci ∩ ∂Ω = ∅

max

{
max
j∈N(ci)

{ρj}, max
x∈N(ci)∩∂Ω

ρ(x)

}
if ci ∩ ∂Ω 6= ∅ .

(3.13)

6This property reflects the fact that the coboundary D is dual to the boundary operator.
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It is straightforward to check that the mean density on the old cells satisfies the local bounds

ρmin
i ≤ ρi ≤ ρmax

i , i = 1, . . . , C . (3.14)

The inequalities (3.14) together with (3.11) imply that the old cell masses satisfy similar local bounds:

mmin
i := ρmin

i µ(ci) ≤ mi ≤ ρmax
i µ(ci) =: mmax

i , i = 1, . . . , C . (3.15)

In the mass-density remap problem we are given the mean density values ρi on the old mesh cells ci and
the boundary values of ρ(x) on ∂Ω. The objective is to find accurate approximations m̃i for the masses of
the new cells c̃i,

m̃i ≈ m̃ex
i =

∫
c̃i

ρ(x)dV , i = 1, . . . , C . (3.16)

We require that the approximations of the new masses satisfy the following conditions:

C1. The total mass is conserved:
C∑
i=1

m̃i =

C∑
i=1

mi = M . (3.17)

C2. If ρ(x) is a global linear function on Ω, then the remapped masses are exact:

m̃i = m̃ex
i =

∫
c̃i

ρ(x)dV , i = 1, . . . , C . (3.18)

C3. The approximation of the mean density on the new cells

ρ̃i =
m̃i

µ̃i
(3.19)

satisfies the local bounds
ρmin
i ≤ ρ̃i ≤ ρmax

i ; i = 1, . . . , C , (3.20)

where (3.12)–(3.13) define ρmin
i and ρmax

i . Equivalently, the following local mass bounds hold:

m̃min
i := ρmin

i µ̃i ≤ m̃i ≤ ρmax
i µ̃i =: m̃max

i . (3.21)

2

4. Optimization-based formulations of remap

This section applies the optimization-based approach in Section 2 to the solution of the mass-density
remap in Section 3.5. We first specialize the abstract optimization problem (2.2) to a generic optimization-
based formulation of remap (OBR) and then specialize this formulation to specific instances of OBR.

The key step in remap is the transformation of the given data on the old mesh into approximate cell
masses m̃ ∈ C̃h on the new mesh such that (3.17) and (3.21) hold. To formalize this step, assume that ρ(x)

belongs in some function space R and let L : R 7→ C̃h be an exact mass update operator

m̃ex = L(ρ(x)) . (4.1)

In general, we cannot compute the action of L because the exact density function ρ(x) is not known and
we are only given the old cell masses m ∈ Ch and the old mean cell densities ρ ∈ Ch. Therefore, we replace
L by an approximation Lh : Ch × Ch 7→ C̃h, which operates on the given data. We seek the approximate
operator in the form Lh(m,u(ρ)) where u(ρ) is some quantity that depends on the mean density values and
belongs in a space E h, associated with some mesh entity type E . A subset U h ⊆ E h defines the “physical”
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properties of u(ρ). On the other hand, the conservation of the total mass (3.17) and the local bounds (3.21)
define the constraints Vh on the range of Lh.

In the optimization-based framework the only consideration in the definition of Lh is the accuracy of the
new cell masses. Therefore, we disregard the range constraints Vh and require that Lh(m,u(ρ)) is exact for
a given class C of scalar density functions:

m̃ex = Lh(m,u(ρ)) ∀ρ(x) ∈ C . (4.2)

For example, if C is the class of globally linear scalar functions, condition (4.2) requires Lh(m,u(ρ)) to
compute the exact new cell masses whenever ρ(x) is a linear function. However, the output of Lh is not
required to conserve the total mass, nor is it required to satisfy the local bounds (3.21). To define the
optimization targets we treat (4.2) as an equation for u(ρ), i.e., the target uT is the element of Eh such that

Lh(m,uT) = m̃ex ∀ρ(x) ∈ C .

Taking all of the above into consideration and setting7 W = `2, we specialize (2.2) to the generic OBR
formulation 

minimize
û∈U h

1

2
‖û− uT‖2`2 subject to

Lh(m,uT) = m̃ex ∀ρ(x) ∈ C ;

C∑
i=1

mi =

C∑
i=1

(Lh(m, û))i and m̃min ≤ Lh(m, û) ≤ m̃max .

(4.3)

The generic OBR problem (4.3) is a quadratic program (QP) in which the objective is to match a given target
quantity, subject to physically motivated constraints on the range of the approximate mass update operator.
The selection of a specific approximate mass update operator and an optimization objective specializes (4.3)
further. In what follows we consider three different specializations of (4.3).

4.1. The flux-variable flux-target (FVFT) optimization formulation of remap

This section specializes the generic OBR problem (4.3) to a flux-variable flux-target (FVFT) formulation.
The starting point is the representation of the new cell masses in the mass flux form∫

c̃i

ρ(x)dV =

∫
ci

ρ(x)dV +
∑

j∈S(ci)

Dij

∫
rj

ρ(x)dV , (4.4)

which follows from formula (3.10). The right hand side in (4.4) defines an exact mass update operator

L : R 7→ C̃h. We seek the approximate mass update operator in the form

m̃ = Lh(m,u(ρ)) := m+ Du(ρ) , (4.5)

where the quantity u(ρ) ∈ E h approximates the exact mass fluxes,

uex
j =

∫
rj

ρ(x)dV j ∈ S(Ω) , (4.6)

on the swept regions. Because a swept region is associated with a side, the entities E are the mesh sides
S(Ω) and E h is the space Sh. Owing to the assumptions on the positions of the boundary vertices, we recall
that µ(rj) = 0 whenever rj corresponds to a boundary side. As a result, uex

j = 0 for all j ∈ S(Γ), i.e.,

uex ∈ Sh0 . This allows us to identify U h with the imposition of a homogeneous “boundary condition” on
the approximate fluxes u(ρ).

7We choose this setting for simplicity because it yields differentiable objective functions. Choices such as W = `p are also
possible, but the resulting optimization problems may be more difficult to solve.
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Furthermore, since D maps Sh0 into the zero mean space Ch0 , the imposition of the homogeneous boundary
condition on u(ρ) guarantees that the FVFT mass update operator conserves the total mass,

C∑
i=1

m̃i =

C∑
i=1

(Lh(m,u(ρ)))i =

C∑
i=1

mi + (Du(ρ))i =

C∑
i=1

mi ∀u(ρ) ∈ Sh0 ,

that is, the restriction of u(ρ) to Sh0 , in conjunction with (4.5), obviates the equality constraint.
In this paper we restrict attention to linearity preserving remap. Therefore, to define the target fluxes

we take C to be the class of globally linear scalar functions and seek uT ∈ Sh such that

Lh(m,uT) ≡ m+ DuT = m̃ex
C ∀ρ ∈ C . (4.7)

It is straightforward to check that (4.7) holds if

uTj :=

∫
rj

ρh(x)dV , (4.8)

for some density reconstruction ρh(x) that is exact for linear functions. Note that while the target is not
subject to any physical constraints it nonetheless satisfies uT ∈ Sh0 and m̃T := Lh(m,uT) conserves the total
mass. However, the masses m̃T are not guaranteed to satisfy the physically motivated local bounds.

Taking all of the above into consideration, the generic OBR problem (4.3) yields the following FVFT
formulation: 

minimize
û∈Sh

0

1

2
‖û− uT‖2S subject to

uTj :=

∫
rj

ρh(x)dV, j = 1, . . . , S ;

m̃min ≤ m+ Dû ≤ m̃max .

(4.9)

In practice, one enforces the boundary condition constraint û ∈ Sh0 directly on the candidate minimizers,
which reduces the FVFT problem (4.9) a global inequality-constrained QP.

4.2. The mass-variable mass-target (MVMT) optimization formulation of remap

The conservation of the total mass by the FVFT mass update operator (4.5) when u(ρ) satisfies a
homogeneous boundary condition represents an attractive computational property of FVFT. On the other
hand, this operator involves the action of D on elements of Sh0 , which results in a globally coupled system
of linear inequality constraints. This coupling complicates the solution of (4.9) and creates a potential
performance bottleneck.

In this section we specialize the generic OBR problem (4.3) into an alternative mass-variable mass-target
(MVMT) formulation. Instead of (4.4), the starting point is the representation of the new cell masses in the
incremental mass form ∫

c̃i

ρ(x)dV =

∫
ci

ρ(x)dV +

(∫
c̃i

ρ(x)dV −
∫
ci

ρ(x)dV

)
. (4.10)

Again, the right-hand side in (4.10) defines an exact mass update operator L : R 7→ C̃h. We approximate
this operator by

m̃ = Lh(m,u(ρ)) := m+ u(ρ) , (4.11)

where the quantity u(ρ) ∈ E h approximates the exact mass increments between the new cells and the old
cells,

uex
i =

∫
c̃i

ρ(x)dV −
∫
ci

ρ(x)dV i ∈ C(Ω) . (4.12)
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Because the exact mass increments are associated with the cell indices, the entities E are the mesh cells
C(Ω), and E h is the space Ch. Owing to the assumption on the positions of the boundary vertices

C∑
i=1

uex
i =

C∑
i=1

∫
c̃i

ρ(x)dV −
C∑
i=1

∫
ci

ρ(x)dV =

∫
Ω

ρ(x)dV −
∫

Ω

ρ(x)dV = 0 . (4.13)

It follows that uex ∈ Ch0 , which allows us to identify U h with the imposition of a zero mean constraint on
the cell values.

Furthermore, the imposition of this constraint on the approximate mass increments u(ρ) guarantees that
the MVMT mass update operator conserves the total mass:

C∑
i=1

m̃i =

C∑
i=1

(L(m,u(ρ)))i =

C∑
i=1

mi + u(ρ)i =

C∑
i=1

mi ∀u(ρ) ∈ Ch0 .

This property is reminiscent of the situation encountered in Section 4.1, where the imposition of the homo-
geneous “boundary condition” on the mass fluxes provided for the conservation of the total mass, but for
one important distinction. Restriction of an element u ∈ Sh to Sh0 is trivial because the “boundary” values
of u can be set to zero independently of each other. On the other hand, forcing an element u ∈ Ch to have
a zero mean is equivalent to solving a single linear equation which couples all cell values and has infinitely
many solutions. Therefore, to guarantee mass conservation we must enforce u ∈ Ch0 by explicitly including
this linear constraint into the optimization formulation.

As in Section 4.1, we define the optimization target uT by taking C to be the class of globally linear
functions and requiring that

Lh(m,uT) ≡ m+ uT = m̃ex
C ∀ρ ∈ C . (4.14)

It is easy to see that this equation holds with

uTi =

∫
c̃i

ρh(x)dV −
∫
ci

ρh(x)dV , (4.15)

provided the density reconstruction ρh(x) is exact for linear functions. Using the same arguments as in
(4.13) it easily follows that the target has zero mean, i.e., uT ∈ Ch0 . Thus, m̃T := Lh(m,uT) conserves the
total mass but m̃T are not guaranteed to satisfy the physically motivated local bounds.

To summarize, the application of the approximate mass update operator (4.11) specializes the generic
OBR formulation (4.9) to the MVMT formulation:

minimize
û∈Ch

1

2
‖û− uT‖2C subject to

uTi :=

∫
c̃i

ρh(x)dV −
∫
ci

ρh(x)dV, i = 1, . . . , C ;

C∑
i=1

ûi = 0 and m̃min ≤ m+ û ≤ m̃max .

(4.16)

While MVMT requires the equality constraint for the conservation of mass, the inequality constraints in
(4.16) are completely decoupled. Thus, switching from the FVFT mass update to the MVMT mass update
changes the type of the OBR formulation from a globally inequality-constrained QP to a singly linearly
constrained QP with simple bounds. The latter structure lends itself to fast and efficient parallel solution,
which makes it particularly attractive for practical algorithm development [2].

4.3. The flux-variable mass-target (FVMT) optimization formulation of remap

Recall the approximate MVMT mass update operator

Lh(m,u(ρ)) = m+ u(ρ)
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where u(ρ) ∈ Ch0 . Because D : Sh0 7→ Ch0 is a surjection, for every u ∈ Ch0 there exists vu ∈ Sh0 such that
u = Dvu. Furthermore, it is easy to see that the identity∫

c̃i

ρh(x)dV −
∫
ci

ρh(x)dV =
∑

j∈S(ci)

Dij

∫
rj

ρh(x)dV

holds for any given density reconstruction ρh(x). The right hand side in this identity involves the FVFT
target, which we label uTF ∈ Sh0 below, whereas the left hand side defines the zero-mean MVMT target,
denoted by uTM ∈ Ch0 . These targets of the two OBR formulations are equivalent in the sense that

uTM = DuTF . (4.17)

Therefore, we can “change” the variables and the targets in the MVMT formulation from mass increments
to mass fluxes. In so doing we effectively combine the approximate FVFT mass update operator with the
MVMT objective functional. Since the FVFT mass update conserves the mass, the equality constraint in
(4.16) is redundant and can be removed from the formulation. The result is the following “hybrid”, FVMT
problem: 

minimize
û∈Sh

0

1

2
‖Dû−DuT‖2C subject to

uTj :=

∫
rj

ρh(x)dV, j = 1, . . . , S ;

m̃min ≤ m+ Dû ≤ m̃max .

(4.18)

While FVMT combines features of both FVFT and MVMT it is equivalent to neither of the two formulations.
For instance, the objectives of both (4.9) and (4.16) are strictly convex, whereas the objective of (4.18) is
not. This follows from the fact that D has a non-trivial kernel; see Section 3.3. Besides the non-strict
convexity of the objective, FVMT also inherits the globally coupled inequality constraints of FVFT.

5. Analytical properties of OBR formulations

This section presents recent and new theoretical results concerning the mathematical properties of the
OBR formulations. We begin with a theorem that establishes the well-posedness of the FVFT and the
MVMT and states sufficient conditions for the preservation of linear densities. The theorem combines
several results from [1], [24] and [2] and we refer to these papers for detailed proofs.

Theorem 5.1. Assume that the locality condition (3.1) holds for C(Ω) and C̃(Ω) and that ρ ∈ Ch is the
mean cell density on the Lagrangian mesh. Then, the quadratic programs (4.9) and (4.16) have unique
optimal solutions.

Furthermore, assume that the density reconstruction ρh(x) is exact for linear functions and (4.8) and
(4.15) define the targets uTF and uTM , respectively. Let Bi denote the set of barycenters of the old cells in

N(ci), Bi = {bj | j ∈ N(ci)}, and let b̃i be the barycenter of the new cell c̃i. The conditions

b̃i ∈H (Bi) if ci ∩ ∂Ω = ∅, (5.1)

b̃i ∈H (Bi ∪ (N(ci) ∩ ∂Ω)) if ci ∩ ∂Ω 6= ∅, (5.2)

where H (·) denotes the convex hull, are sufficient for FVFT and the MVMT to yield the exact masses on
the new cells, whenever ρ(x) = c0 + c · x. 2

5.1. The structure of the FVFT optimal solution

From (3.7) it follows that the FVFT target uT ∈ Sh0 has the orthogonal decomposition

uT = uT0 + uT⊥ , uT0 ∈ kerD and uT⊥ ∈ kerD⊥ .
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Using this decomposition the FVFT objective splits into two independent terms:

‖û− uT‖2S = ‖û0 − uT0 ‖2S + ‖û⊥ − uT⊥‖2S ,

where û = û0+û⊥ is the orthogonal decomposition of u ∈ Sh0 . Because Dû = Dû⊥, the inequality constraints
in (4.9) do not depend on the null-space component û0. It follows that the FVFT splits equivalently into
two independent optimization problems over kerD⊥ and kerD, respectively,

(a)


minimize
û⊥∈kerD⊥

1

2
‖û⊥ − uT⊥‖2S subject to

uTj :=

∫
rj

ρh(x)dV, j = 1, . . . , S ;

m̃min ≤ m+ Dû⊥ ≤ m̃max

and (b)


minimize
û0∈kerD

1

2
‖û0 − uT0 ‖2S subject to

uTj :=

∫
rj

ρh(x)dV, j = 1, . . . , S
(5.3)

for the orthogonal components of the FVFT optimal solution. Problem (b) is a global QP with a strictly
convex objective. The unique minimizer of this problem is the null-space component uT0 of the FVFT
target uT. The feasible set of Problem (a) has the form

Σ⊥ = {u⊥ ∈ kerD⊥ | m̃min ≤ m+ Du⊥ ≤ m̃max} . (5.4)

To show that Σ⊥ is non-empty, recall that the FVFT feasible set

Σ = {u ∈ Sh0 | m̃min ≤ m+ Du ≤ m̃max} 6= ∅.

Writing u = u0 + u⊥ and noting that Du = Du⊥ implies that Σ⊥ 6= ∅ as well. Together with the strict
convexity of the FVFT objective, it follows that Problem (a) has a unique minimizer. The following theorem
summarizes our observations.

Theorem 5.2. Let uT = uT0 +uT⊥ be the orthogonal decomposition of the FVFT target. The optimal solution
of (4.9) has the form

uopt = uT0 + uopt⊥ (5.5)

where uopt⊥ is the unique solution of Problem (a) in (5.3).

5.2. The structure of the FVMT optimal solution

We proceed to examine the hybrid FVMT formulation. The first result provides some additional infor-
mation about the FVMT objective.

Proposition 5.3. The FVMT objective is strictly convex on kerD⊥.

Proof. We need to show that for any u, v ∈ kerD⊥, u 6= v and 0 < λ < 1, there holds

‖λDu+ (1− λ)Dv‖2C < λ‖Du‖2 + (1− λ)‖Dv‖2C .

Suppose this inequality does not hold. Then, there exists 0 < λ0 < 1 such that

λ2
0‖Du‖2C + (1− λ0)2‖Dv‖2 + 2λ0(1− λ0)(Du,Dv)C ≥ λ0‖Du‖2C + (1− λ0)‖Dv‖2C ,

which implies that
2(Du,Dv)C ≥ ‖Du‖2C + ‖Dv‖2C ∀u, v ∈ kerD⊥ .

This is clearly a contradiction, which proves the assertion.
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Consider the restriction of the FVMT to the null-space complement:
minimize
û⊥∈kerD⊥

1

2
‖Dû⊥ −DuT‖2C subject to

uTj :=

∫
rj

ρh(x)dV, j = 1, . . . , S ;

m̃min ≤ m+ Dû⊥ ≤ m̃max .

(5.6)

The feasible set of (5.6) coincides with the set Σ⊥ defined in (5.4). Therefore, the FVMT restriction has at
least one non-trivial minimizer. On the other hand, Proposition 5.3 establishes the strict convexity of the
FVMT objective on kerD⊥. It follows that the QP (5.6) has a unique minimizer. With the help of these
observations we can now characterize the class of optimal solutions of FVMT.

Theorem 5.4. Any optimal solution of FVMT (4.18) has the form uopt = u0 + uopt⊥ where u0 ∈ kerD is

arbitrary and uopt⊥ ∈ kerD⊥ is the unique solution of the FVMT restriction (5.6).

Proof. Suppose that uopt ∈ Σ is an optimal solution of the FVMT with decomposition uopt = uopt0 + uopt⊥ .

Because Duopt = Duopt⊥ it follows that uopt⊥ ∈ Σ⊥, while the optimality of uopt implies that

‖Duopt⊥ −DuT‖C ≤ ‖Du⊥ −DuT‖C ∀u⊥ ∈ kerD⊥ .

It follows that uopt⊥ solves (5.6). Because the latter has a unique minimizer, this proves the theorem.

5.3. The relationship between FVFT and FVMT

While the FVFT and the FVMT solutions have similar structures, there are some important differences
between them. The null-space component of the FVFT solution coincides with the null-space component
uT0 of the target, whereas the null-space component of the FVMT solution is an arbitrary element in kerD.
As a result, the difference between these components can be arbitrarily large. On the other hand, Theorems
5.2 and 5.4 reveal that the solution components in kerD⊥ solve similar strictly convex QPs, which have the
same feasible set but different objectives. Therefore, it is not unreasonable to expect that these components
are in some sense equivalent.

Let uF⊥ and uM⊥ denote the solution components of FVFT and FVMT in the null-space complement.
Because uF⊥ ∈ Σ⊥ is the unique minimizer of Problem (a) in (5.3) and uM⊥ ∈ Σ⊥, the Poincare-Friedrichs
inequality (3.8) implies that

‖uF⊥ − uT⊥‖S ≤ ‖uM⊥ − uT⊥‖S ≤ K‖DuM⊥ −DuT⊥‖C .

On the other hand, because uM⊥ ∈ Σ⊥ is the unique minimizer of the QP (5.6) and uF⊥ ∈ Σ⊥, we have that

‖DuM⊥ −DuT⊥‖C ≤ ‖DuF⊥ −DuT⊥‖C ≤ C‖uF⊥ − uT⊥‖S .

The following theorem provides a formal statement of this result.

Theorem 5.5. The null-space components uF⊥ and uM⊥ of the FVFT and FVMT optimal solutions, respec-
tively, are equivalent in the following sense: there exist constants C1 and C2, independent of the mesh size
and such that

C1‖uF⊥ − uT⊥‖S ≤ ‖DuM⊥ −DuT⊥‖C ≤ C2‖uF⊥ − uT⊥‖S . (5.7)

5.4. The relationship between MVMT and FVFT/MT

The main goal of this section is to examine the relationship between the optimal solutions of the MVMT
and the FVFT formulations. The intermediate FVMT formulation plays a crucial role in this task. Specifi-
cally, we first establish a connection between the optimal solutions of MVMT and FVMT. This connection
and the result of Theorem 5.5 establish a notion of equivalence between MVMT and FVFT.
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To distinguish the variables in the different OBR formulations we use the letter u for MVMT and the
letter v for FVFT/MT. For convenience we restate the equivalence (4.17) of the MVMT and FVFT targets
in this notation:

uT = DvT .

Using this identity the QP (4.16) assumes the equivalent form

minimize
û∈Ch

1

2
‖û−DvT‖2C subject to

vTj :=

∫
rj

ρh(x)dV, j = 1, . . . , S ;

C∑
i=1

ûi = 0 and m̃min ≤ m+ û ≤ m̃max .

(5.8)

We recall that the feasible set of (5.8) is given by

M = {u ∈ Ch0 | m̃min ≤ m+ û ≤ m̃max} 6= ∅ .

Let vopt⊥ ∈ kerD⊥ be the unique minimizer of the FVMT restriction (5.6) and define

uF = Dvopt⊥ .

Because the range of D is Ch0 and vopt⊥ is feasible for (5.6), i.e., m̃min ≤ m+ Dvopt⊥ ≤ m̃max, it follows that

uF ∈ Ch0 and m̃min ≤ m+ uF ≤ m̃max .

In other words, uF belongs to the feasible set M of the MVMT.
Consider now an arbitrary element û ∈ M . Because û ∈ Ch0 , the surjective property of D implies the

existence of a v̂u ∈ kerD⊥, such that û = Dv̂u. On the other hand, because vopt⊥ is the minimizer of (5.6),
there holds

‖û−Dvopt⊥ ‖C = ‖Dv̂u −Dvopt⊥ ‖C ≥ ‖Dv
opt
⊥ −Dvopt⊥ ‖C = ‖uF −Dvopt⊥ ‖C .

We have just established that uF is feasible and

‖uF −Dvopt⊥ ‖C ≤ ‖û−Dvopt⊥ ‖C ∀û ∈M ,

that is uF is an optimal solution of (5.8). The following theorem provides a formal statement of the
equivalence between the MVMT and the FVMT solutions.

Theorem 5.6. Let uopt ∈M denote the unique minimizer of MVMT. There holds

uopt = Dvopt⊥ (5.9)

where vopt⊥ is the unique minimizer of the FVMT restriction (5.6).

Note that this result implies the equality of the MVMT and FVMT objective functions at the optimal
solutions. The main result of this section is a direct consequence of this theorem and Theorem 5.5.

Corollary 5.7. Let uopt ∈ M denote the unique minimizer of MVMT and vF⊥ the unique minimizer of
Problem (a) in (5.3). Then, there exist constants C1 and C2, independent of the mesh size, such that

C1‖vF⊥ − vT⊥‖S ≤ ‖uopt −DvT‖C ≤ C2‖vF⊥ − vT⊥‖S . (5.10)

Because the null-space component of the FVFT solution is always equal to the null-space component
of the target, this result shows that asymptotically MVMT and FVFT are equivalent, i.e., the accuracy of
their solutions is comparable. The results in Section 7 confirm this.
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6. Versatility of OBR

In this section we present three extensions of OBR that demonstrate the versatility of the divide-and-
conquer optimization strategy. The first two examples demonstrate the flexibility afforded by the decoupling
of the target definition from the enforcement of the physical properties. Section 6.1 introduces the notion
of a reconstruction residual and defines residual-dependent adaptable targets that adjust to local solution
properties. The example in Section 6.2 extends OBR to grids in spherical coordinates, which are common
in many climate models. In both cases, the necessary modifications to OBR are confined to the target
definition, leaving the rest of the formulation essentially unchanged. As a result, the extended formulations
retain all theoretical and computational properties of the original OBR. In particular, the extensions do not
require any changes in the design and implementation of the optimization algorithms, which are the core
of the OBR approach. The third example extends OBR to a new class of conservative, feature-preserving
optimization-based transport (OBT) algorithms. Because OBR provides the computational core of this
extension, our new transport algorithms inherit the theoretical and computational properties of OBR. In
particular, the developments in Sections 6.1–6.2 readily apply to the OBT algorithms, yielding adaptable,
conservative, linearity and bounds-preserving transport schemes in Rd and on the sphere.

6.1. Optimization-based remap with adaptable targets

The targets in Section 4 were defined using a density reconstruction ρh(x) that was assumed to be exact
for linear functions. This approach works well for smooth densities but is less satisfactory for solutions
with sharp features and discontinuities. In this section we take advantage of the separation between the
target definition and the enforcement of the physical properties to develop targets that are better suited for
piecewise smooth and discontinuous solutions.

Our main goal is to demonstrate the versatility of the optimization-based strategy rather than to present
a full-fledged adaptable OBR, which is the focus of a forthcoming paper. Consequently, we consider a
simple procedure that adapts the targets by using a reconstruction residual to modify the gradient of the
reconstructed density ρh(x).

To this end, we start with a piecewise density reconstruction ρh(x) on the old mesh C(Ω) that is exact
for linear densities and preserves the mean density on C(Ω):

ρh(x)|ci := ρhi (x) = ρi + gi · (x− bi) . (6.1)

In (6.1) the symbol gi denotes an approximation of ∇ρ on cell ci. To define the reconstruction residual,
note that the point value of any linear function at the barycenter of a domain D equals its mean value over
this domain. Therefore, if the exact density is linear there holds

ρ(bi) =

∫
ci
ρ(x)dV

µ(ci)
= ρi ∀i = 1, . . . , C .

This property prompts the following definition of the reconstruction residual on cell ci:

qi =
∑

j∈N(ci)

|ρj − ρhi (bj)| . (6.2)

The vector q of all cell residuals belongs to the piecewise constant space Ch. Suppose that the exact
density is linear. In this case there holds ρ(bj) = ρj and since ρh is exact for linear functions we have that
ρhi (bj) = ρ(bj) = ρj , i.e., ρj − ρhi (bj) = 0 for all j ∈ N(ci). It follows that qi = 0, ∀i ∈ C(Ω), whenever the
density is a globally linear function, thereby justifying the term “residual” for (6.2).

The value of qi measures the deviation of the mean density values in the neighborhood of ci from the
values of a locally linear function, i.e., the reconstruction residual provides local information about the
density behavior. In particular, if the value of qi is large, this means that in the neighborhood of ci the
density significantly deviates from a linear function. We can use this information to locally adjust the
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reconstruction formula on all cells where qi exceeds a certain threshold. To this end, consider a collection
of real-valued functions αi of a scalar argument such that

αi(ξ) ≥ 1 and αi(0) = 1 .

We define the adaptable reconstruction by multiplying the approximate gradient on each cell by a function
of the reconstruction residual:

ρA(x)|ci := ρAi (x) = ρi + αi(qi)gi · (x− bi) . (6.3)

Substitution of ρh by ρA in (4.9), (4.16) and (4.18) defines the adaptable target extensions of these OBR
formulations.

Clearly, (6.3) preserves the mean density values on the old mesh. Moreover, because the residual vanishes
whenever ρ is globally linear, the adaptable reconstruction (6.3) remains exact for linear densities. As
a result, the adaptable target extensions of the OBR formulations remain linearity preserving, yet their
accuracy increases for solutions that differ significantly from linear functions. The examples in Section 7
confirm this conjecture. Finally, we note that since the targets are not required to be feasible, the use of
(6.3) in no way affects the existence of optimal solutions in the OBR formulations.

It is instructive to compare the adaptable reconstruction (6.3) with a slope-limited reconstruction com-
mon in many transport methods:

ρL(x)|ci := ρLi (x) = ρi + φ(Ri)gi · (x− bi) . (6.4)

In (6.4) the number Ri is a slope ratio and φ(Ri) is a slope limiter [19]. The limiter in (6.4) carries the
double burden of ensuring that the reconstruction is both monotone and as accurate as possible, with the
former being the dominant goal. In contrast, the sole purpose of αi in (6.3) is to improve the accuracy
of the reconstruction without regard to whether or not the local bounds or monotonicity hold. A second
significant difference is that the slope limiter depends on slope ratios, i.e., it is not a residual-based quantity.
As a result, φ(R) usually exhibits a “single behavior mode” that can sometimes change solution features.
For example, the SuperBee [40] and the Barth-Jespersen [41] limiters can turn smooth waves into square
waves, and the former tends to steepen gradients [19, 46].

6.2. Extension to spherical geometry

As a second demonstration of the versatility of our approach, we extend the OBR to grids in spherical
coordinates, which are commonly used in climate models. This extension relies on simple modifications of
the target computation but does not in any way affect the optimization core of the OBR, nor does it require
changes in the definition of the constraints.

We consider a geophysical coordinate system with latitude θ ∈ [−π/2, π/2] and longitude λ ∈ [0, 2π]
on a sphere with unit radius. Away from the poles, the extension of OBR to spherical coordinates boils
down to the proper evaluation of the entities and quantities entering the linear density reconstruction and
its subsequent integration on the swept regions in spherical coordinates.

As in the case of Rd, the unsigned measure of a set D on the surface of the sphere is

µ(D) =

∫
D

dV ,

whereas the application of the Green’s theorem∫
D

dV = −
∫
∂D

sin θdλ .

in conjunction with an orientation choice for ∂D defines the signed measure µ?(D).
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In the case of spherical coordinates the barycenter formula for a cell cj with position vector s on the
surface of the sphere

bj =

∫
cj

s dV

µ(cj)
,

assumes the component-wise form

bθ,j =

∫
cj

θ dV

µ(cj)
, and bλ,j =

∫
cj

λ cos θ dV

µ(cj)
.

To compute the barycenter components we follow the approach in [42] and use the Green’s theorem to
convert the integral in the numerator into a boundary integral:

bθ,j =

−
∫
∂cj

(cos θ + θ sin θ) dλ

µ(cj)
, and bλ,j =

−
∫
∂cj

λ/2(sin θ cos θ + θ) dλ

µ(cj)
.

The formula for a linear density reconstruction that preserves the mean density (ρi) is the same in spherical
coordinates as in Rd:

ρh(s)|ci := ρhi (s) = ρi + gi · (s− bi) ,

except that the vector gi approximates the gradient of ρ in spherical coordinates:

gi = (gθi , g
λ
i ) ≈

(
∂ρ

∂θ
,

1

cos θ

∂ρ

∂λ

) ∣∣∣
ci
.

Thus, in latitude and longitude components the mean-preserving reconstruction has the form

ρh(s)|ci = ρi +
(
gθi
)

(θ − bθ,i) +
(
gλi
)

(λ cos θ − bλ,i) .

Once the density reconstruction in spherical coordinates is available, the rest of the OBR algorithm functions
exactly as in the Rd case. In particular, we have the FVFT and the MVMT versions of OBR, as well as
their adaptable target extensions in spherical coordinates. The latter follows verbatim the process outlined
in Section 6.1.

6.3. Extension to optimization-based transport

This section demonstrates another aspect of the versatility of the OBR approach. Specifically, we combine
the optimization framework developed in Sections 2–4 with the incremental remapping approach [27] to
obtain a new class of feature-preserving methods for the scalar transport equation

∂ρ

∂t
+∇ · ρv = 0 on Ω× [0, T ] and ρ(x, 0) = ρ0(x) . (6.5)

Here T > 0 is the final time, ρ(x, t) is a positive density function on Ω× [0, T ] with the initial distribution
ρ0(x), and v = v(x, t) is a given velocity field.

Let Ω(t) denote the deformed (Lagrangian) domain at time t ∈ [0, T ], i.e., the domain whose points
move along the characteristic lines dx/dt = v. We assume that v is such that Ω(t1) = Ω(t2) for any
t1, t2 ∈ [0, T ]. This assumption enables the fulfillment of the restrictions on the positions of the boundary
vertices in Section 3.1, but is not otherwise critical. Let V (t) ⊂ Ω(t) be an arbitrary Lagrangian control
volume with mass

mV (t) =

∫
V (t)

ρ(x, t)dV .
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Figure 3: A single step of a transport algorithm based on forward incremental remapping. The left pane shows the departure
grid C(Ω(t)). The middle pane illustrates the Lagrangian step in which the blue cell from the departure grid evolves into the
red cell on the arrival grid C(Ω(t + ∆t)). The right pane shows the remap of mass and density from the arrival (”old”) grid to
the departure (”new”) grid.

Equation (6.5) is equivalent to
d

dt
mV (t) = 0 ∀V (t) ⊂ Ω(t) . (6.6)

The conservation of mass in Lagrangian volumes (6.6) is the basis for the incremental remapping approach
[27] for the solution of (6.5). Note that setting V (t) = Ω(t) in (6.6) yields the conservation of total mass.

Let C(Ω(t)) denote a current or “departure” grid on the deformed domain Ω(t) at the current time t.
The projection of the cells ci(t) of the departure grid into a future time t + ∆t yields a future or ”arrival”
grid C(Ω(t + ∆t)) with cells ci(t + ∆t). Assuming that the time step is small enough, the arrival grid is a
valid partition of Ω(t+ ∆t), which satisfies the assumptions in Section 3.1. Owing to (6.6) the mass in each
cell is conserved,

mex
i (t+ ∆t) =

∫
ci(t+∆t)

ρ(x, t+ ∆t) dV =

∫
ci(t)

ρ(x, t) dV = mex
i (t) , (6.7)

and the mean cell density on the arrival grid is

ρexi (t+ ∆t) =
mex
i (t+ ∆t)

µ(ci(t+ ∆t))
=

mex
i (t)

µ(ci(t+ ∆t))
. (6.8)

Suppose that ρ(t) ∈ Ch and m(t) ∈ Ch approximate ρex(t) and mex(t) on the departure grid C(Ω(t)).
From (6.7)–(6.8) it follows that

mi(t+ ∆t) = mi(t) and ρi(t+ ∆t) =
mi(t+ ∆t)

µ(ci(t+ ∆t))
=

mi(t)

µ(ci(t+ ∆t))

approximate the cell masses and the mean cell density values, respectively, on the arrival grid C(Ω(t+ ∆t)).
The forward incremental remapping approach treats the departure and the arrival grids as the ”new” and
”old” grids respectively, i.e., we set C̃(Ω) = C(Ω(t)) and C(Ω) = C(Ω(t+ ∆t)). Remapping ρ(t+ ∆t) and
m(t+∆t) from the arrival grid to the departure grid yields approximations ρ̃ and m̃ of the mean cell density
and the cell masses at the future time t+ ∆t but with respect to the departure grid cells:

m̃i ≈ m̃ex
i =

∫
ci(t)

ρ(x, t+ ∆t) dV ; ρ̃i ≈ ρ̃ex =

∫
ci(t)

ρ(x, t+ ∆t) dV

µ(ci(t))
=

m̃ex
i

µ(ci(t))
.

In other words, repeatedly projecting the same fixed departure grid forward in time and then immediately
remapping the mass and the density back to it is equivalent to finding an approximate solution of (6.5) on the
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fixed departure grid; see Figure 3. This approach is also known as conservative semi-Lagrangian transport
and is commonly used in climate models [29, 28, 43]. By combining the forward incremental remapping
with an optimization-based remap we obtain a new class of optimization-based, feature preserving transport
algorithms.

In summary, assuming that we are given the approximations m(t) and ρ(t) on some fixed departure grid

C̃(Ω) = C(Ω(t)), one step of the optimization-based transport method comprises the following stages:

• Project departure grid to arrival grid: C(Ω(t)) 7→ C(Ω(t+ ∆t));

• Lagrangian transport: mi(t+ ∆t) = mi(t) and ρi(t+ ∆t) = mi(t)/µ(ci(t+ ∆t)), for i = 1, . . . C;

• Optimization-based remap: m(t+ ∆t) 7→ m̃ and ρ(t+ ∆t) 7→ ρ̃, for i = 1, . . . C.

The optimization-based transport (OBT) is a conservative semi-Lagrangian scheme. Because OBR provides
the computational core of this scheme, OBT inherits all theoretical and computational properties of the
algorithms in Section 4. Furthermore, by using the adaptable targets in Section 6.1 we readily obtain an
adaptable version of OBT, whereas the extension of OBR to spherical geometry provides an adaptable
version of OBT for transport on the sphere.

7. Numerical studies

The numerical behavior of optimization algorithms designed for an efficient solution of the FVFT and
MVMT formulations is investigated in the context of mesh remapping in [2], where they are also compared
to the explicit FCR scheme. This study shows that for small mesh displacements the qualitative (“eyeball”)
and quantitative (asymptotic) accuracies of FVFT, MVMT and FCR, respectively, are very similar. The
study also shows that FVFT and MVMT are considerably more robust and more accurate than FCR when
the mesh displacements are large. The application of FVFT and FCR to scalar transport is studied in [44],
with similar conclusions. However, [44] also reveals that the computational cost of FVFT, while exhibiting
linear complexity with respect to the mesh size, can be O(10) larger than the computational cost of FCR
in transport applications. This renders FVFT-based transport impractical in most cases.

The numerical studies presented here focus on answering two questions:

• Does the simpler structure of the MVMT optimization problem yield an algorithm that is competitive
with the explicit FCR scheme in the context of transport applications?

• Does the flexibility of optimization-based remap algorithms to use adaptable high-order targets yield
qualitative improvements in scalar transport?

It turns out that the answers to both questions are positive.

7.1. Transport in a plane

Our numerical studies begin with a comparison of the computational cost and numerical accuracy of FCR,
FVFT, MVMT and MVMT-a; by MVMT-a we denote the MVMT formulation (4.16) with the adaptable
target

ρAi (x) = ρi + αi(qi)gi · (x− bi) ∀i = 1, . . . , C ,

where for the given constants γ1, γ2 > 0,

αi(qi) =

1 if qi/ max
i=1,...,C

{qi} ≤ γ1

1 + γ2 qi/ max
i=1,...,C

{qi} otherwise .

The FVFT optimization algorithm is described in [45]. The simpler MVMT algorithm is developed in [2].
The first example is a rotation of a solid body given by the combination of a smooth hump, a cone and

a slotted cylinder. The setup is identical to that described in [45] and goes back to LeVeque [46]. The
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Figure 4: Initial data for the solid body rotation test.

initial condition is depicted in Figure 4, over the domain Ω =[0, 1]×[0, 1]. The smooth hump is given by
ρ(x1, x2, 0) = 0.25(1 + cos(πr(x1, x2)), where r(x1, x2) = min{

√
(x1 − 0.25)2 + (x2 − 0.5)2, 0.15}/0.15. We

use a cone and a slotted cylinder of radius 0.15 and height 1, centered at (0.5,0.25) and (0.5,0.75), respectively.
The slot in the cylinder is created by removing the region [0.475,0.525]×[0.6,0.85]. The velocity field is given
by v(x1, x2) = (−x2 + 0.5, x1 − 0.5). For time discretization we use RK4, the fourth-order Runge-Kutta
method, in all numerical experiments.

The results of a full rotation on a 128×128 mesh, with the final time T = 2π and 810 time steps, are
given in Figure 5 for each of the methods. Here we use the MVMT-a parameters γ1 = 0.2 and γ2 = 0.3. The
figure demonstrates that FCR, FVFT and MVMT perform similarly in the eyeball norm, whereas MVMT-a
stands out as being qualitatively more accurate. This is confirmed in Figure 6, where it is shown that
MVMT-a resolves the back side and the slot of the cylinder better than FCR, while the cone is recovered
equally well by the methods.

All methods perform similarly when it comes to asymptotic accuracy, see Table 1. However, as expected
from the qualitative results, MVMT-a shows the lowest absolute errors. Table 2 confirms that FVFT is the
least efficient method, trailing behind FCR by a factor of O(10). This is in agreement with our findings
in [44], and due to the large, globally coupled linear systems that must be solved at every optimization
iteration. On the other hand, the computational cost of MVMT is marginally lower than the cost of FCR,
while MVMT-a is only slightly less efficient. The huge improvement in performance over FVFT can be
traced back to a mostly decoupled, cell-local optimization algorithm, with the coupling occurring in a single
constraint that is easily satisfied, see [2].

Solid-body rotation (L1 error)

FCR FVFT MVMT MVMT-a
# cells # steps L1 error rate L1 error rate L1 error rate L1 error rate

64×64 408 3.42e-2 — 3.59e-2 — 3.93e-2 — 3.13e-2 —
128×128 810 1.94e-2 0.82 2.05e-2 0.80 2.34e-2 0.81 1.73e-2 0.86
256×256 1614 1.12e-2 0.81 1.19e-2 0.80 1.39e-2 0.80 1.12e-2 0.75

Table 1: Comparison of the L1 errors of FCR, FVFT, MVMT and MVMT-a with respect to the initial condition given in
Figure 4. The rates of convergence are similar for all methods; MVMT-a shows the lowest absolute errors.

Our next test is a left-to-right-and-back translation of the slotted cylinder, see Figure 7. For this
experiment, the slotted cylinder is centered at (0.5,0.5). The final time is T = 6 and the velocity field
is given by v(x1, x2, t) = (1, 0) for t ∈ [0, 3) and v(x1, x2, t) = (−1, 0) for t ∈ [3, 6]. We note that our
implementation utilizes periodic boundaries for the computational domain Ω and that the slotted cylinder
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Figure 5: Transport results for the solid-body rotation test, for one full revolution (810 time steps) on a 128×128 mesh; FCR,
FVFT and MVMT perform similarly in the eyeball norm, whereas MVMT-a stands out as being qualitatively more accurate.
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Figure 6: Comparison of the qualitative accuracy of MVMT-a and FCR for the solid-body rotation test. Left pane: x = 0.50
slice. Right pane: y = 0.75 slice. The MVMT-a scheme resolves the back side and the slot of the cylinder better than FCR.
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Solid-body rotation (timings)

FCR FVFT MVMT MVMT-a
# cells # steps time(sec) time(sec) ratio time(sec) ratio time(sec) ratio

64×64 408 3.3 63.7 19.3 3.4 1.0 3.8 1.1
128×128 810 26.4 496.4 18.8 26.2 1.0 28.8 1.1
256×256 1614 229.1 3464.2 15.1 222.7 1.0 230.9 1.0

Table 2: Comparison of the computational costs of FCR, FVFT, MVMT and MVMT-a as measured by MatlabTM wall-clock
times in seconds, on a single Intel Xeon X5680 3.33GHz processor, for the solid-body (smooth hump, cone, slotted cylinder)
rotation test. Ratios of run times of FVFT, MVMT and MVMT-a with respect to FCR are included. The costs of MVMT
and MVMT-a are almost identical to the cost of FCR, while FVFT is 15 to 20 times slower.
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Figure 7: Initial data for the solid body translation test.

traverses the domain six times during the experiment (three times to the right and three times to the left).
The results of the solid-body translation on a 128×128 mesh, with a total of 1092 time steps, are given

in Figure 8 for FCR and MVMT-a. Here we use the MVMT-a parameters γ1 = 0.1 and γ2 = 0.75. In this
experiment MVMT-a outperforms FCR significantly in the eyeball norm, fully preserving the slot in the
cylinder. Figure 9 confirms this result. Table 3 shows that with respect to the initial condition given in
Figure 7 MVMT-a exhibits faster convergence and lower absolute errors.

Solid-body translation (timings and L1 error)

FCR MVMT-a FCR MVMT-a
# cells # steps time(sec) time(sec) ratio L1 error rate L1 error rate

64×64 546 4.2 4.9 1.2 2.77e-2 — 2.75e-2 —
128×128 1092 35.2 37.8 1.1 1.59e-2 0.80 1.34e-2 1.04
256×256 2178 282.2 295.5 1.0 9.45e-3 0.78 6.70e-3 1.02

Table 3: (1) Comparison of the computational costs of FCR and MVMT-a as measured by MatlabTM wall-clock times in
seconds, on a single Intel Xeon X5680 3.33GHz processor, for the slotted-cylinder translation test. Ratios of run times of
MVMT-a with respect to FCR are included. The cost of MVMT-a is very close to the cost of FCR. (2) Comparison of the L1

errors with respect to the initial condition given in Figure 7. MVMT-a exhibits lower absolute errors and faster convergence.

7.2. Transport on a sphere

Two numerical studies are performed on the spherical domain to compare the computational cost and
numerical accuracy of FCR and MVMT-a. The first computational example on the sphere uses a non-

25



FCR MVMT-a

0.2 0.4 0.6 0.8 1

0.2
0.4

0.6
0.8

1
0

0.2
0.4
0.6
0.8

1

xy
0.2 0.4 0.6 0.8 1

0.2
0.4

0.6
0.8

1
0

0.2
0.4
0.6
0.8

1

xy

Figure 8: Transport results for the solid-body translation test, for 546 time steps to the right and 546 time steps to the left on
a 128×128 mesh. In this experiment MVMT-a fully preserves the slot in the cylinder, while FCR is significantly more diffusive.
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Figure 9: Comparison of the qualitative accuracy of MVMT-a and FCR for the solid-body translation test. Left pane: x = 0.50
slice. Right pane: y = 0.50 slice. MVMT-a resolves the back side and the slot of the cylinder much better than FCR.

divergent deformational velocity field due to Nair and Lauritzen [47]

u(λ, θ, t) = 2 sin2(λ) sin(2θ) cos(πt/T )

v(λ, θ, t) = 2 sin(2λ) cos(θ) cos(πt/T )
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with the period T set to 5. An initial density distribution consisting of two notched cylinders with radii
r = 1/2, height h = 1, and initial positions (λ0, θ0) = (5π/6, 0) and (λ1, θ1) = (7π/6, 0) is used. The two
slotted cylinders are oriented symmetrically with respect to the deformational flow field in this configuration.
In spherical coordinates the notched cylinder implementation requires the computation of the great circle
distance between an arbitrary point (λ, θ) and a cylinder center (λi, θi), which is defined as

di(λ, θ) = arccos (sin θi sin θ + cos θi cos θ cos(λ− λi)) .
With this definition the initial configuration of the notched cylinders, shown in Figure 10, may be expressed
in spherical coordinates as

ρ(λ, θ) =


h if di < r and |λ− λi| ≥ r/6 for i = 1, 2
h if d0 < r and |λ− λ0| < r/6 and θ − θ0 < −5r/12
h if d1 < r and |λ− λ1| < r/6 and θ − θ1 > 5r/12
0 otherwise.

Figure 10: Initial data for the transport tests on the sphere.

The test case is run on three meshes with resolutions of 3◦, 1.5◦, and 0.75◦, using RK4 for the time
discretization. Results at a final time T = 5 for the 0.75◦ grid are shown in Figure 11. The MVMT-a
result, where parameters γ1 = 0.1 and γ2 = 0.75 were used, appears qualitatively better than the FCR result
particularly for the cylinder on the right. As seen in Table 4 both methods have similar rates of convergence,
but MVMT-a has smaller absolute errors than FCR and the computational costs of the methods are nearly
the same.

Deformational velocity field on the sphere (timings and L1 error)

FCR MVMT-a FCR MVMT-a
mesh # steps time(sec) time(sec) ratio L1 error rate L1 error rate

3◦ 600 23.0 24.2 1.1 4.34e-2 — 3.60e-2 —
1.5◦ 1200 187.7 190.0 1.0 2.85e-2 0.61 2.27e-2 0.66
0.75◦ 2400 1644.4 1717.7 1.0 1.67e-2 0.69 1.40e-2 0.68

Table 4: (1) Comparison of the computational costs of FCR and MVMT-a as measured by MatlabTM wall-clock times in
seconds, on a single Intel Xeon X5680 3.33GHz processor, for the two slotted-cylinder deformation test on the sphere. Ratios of
run times of MVMT-a with respect to FCR are included. The cost of MVMT-a is very close to the cost of FCR. (2) Comparison
of the L1 errors with respect to the initial condition given in Figure 10. MVMT-a exhibits lower absolute errors and comparable
convergence.

The second computational example is a solid body rotation test using the temporally constant zonal flow
field

u(λ, θ) = 2π (cos(θ) cos(α) + cos(λ) sin(θ) sin(α))

v(λ, θ) = 2π sin(λ) sin(α),
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FCR MVMT-a

Figure 11: Transport results for the deformational flow test on the sphere at a final time T = 5 after 2400 time steps on a
0.75◦ mesh. The MVMT-a results appear sharper than the FCR results, particularly for the cylinder on the right.

where the rotation angle α provides the orientation of the flow [29]. In the examples shown here α is set to
zero resulting in a flow oriented along the equator. The initial density configuration used in the previous
experiment and shown in Figure 10 is also used in this case. The notched cylinders are rotated around the
domain twice, first in one direction and then in the opposite direction using RK4 for the time discretization.
In this experiment MVMT-a with parameters γ1 = 0.1 and γ2 = 0.75 exhibits a higher rate of convergence
and lower absolute errors than FCR, as seen in Table 5, while the computational cost of MVMT-a is only
slightly higher than that of FCR. Results for two full rotations of the cylinders around the equator on the
0.75◦ mesh with final time T = 2 for 1920 time steps are shown in Figure 12 where the improved performance
of MVMT-a over FCR can be seen qualitatively.

Solid-body translation on the sphere (timings and L1 error)

FCR MVMT-a FCR MVMT-a
mesh # steps time(sec) time(sec) ratio L1 error rate L1 error rate

3◦ 480 17.4 18.2 1.0 3.25e-2 — 2.79e-2 —
1.5◦ 960 132.5 151.6 1.1 1.99e-2 0.78 1.36e-3 1.04
0.75◦ 1920 1184.5 1379.0 1.2 1.10e-2 0.78 5.41e-3 1.18

Table 5: (1) Comparison of the computational costs of FCR and MVMT-a as measured by MatlabTM wall-clock times in
seconds, on a single Intel Xeon X5680 3.33GHz processor, for the slotted-cylinder translation test on the sphere. Ratios of run
times of MVMT-a with respect to FCR are included. The cost of MVMT-a is very close to the cost of FCR. (2) Comparison
of the L1 errors with respect to the initial condition given in Figure 10. MVMT-a exhibits lower absolute errors and faster
convergence.

8. Conclusions

In this paper we investigated a divide-and-conquer optimization-based strategy for the formulation of
feature-preserving numerical methods. We applied this strategy to the constrained interpolation (remap) of
a scalar conserved quantity and derived a collection of optimization-based remap (OBR) formulations.

We presented and studied three instances of OBR formulations, which differ by the definition of their
targets, constraint sets and objective functions. While mathematically all three yield equivalent solutions,
the mass variable mass target (MVMT) formulation proved to be the most efficient algorithmically, with
the cost essentially equivalent to that of the explicit Flux Corrected Remap (FCR) approach.

The use of adaptable targets and the extensions to spherical geometry and to the conservative, bounds-
preserving optimization-based transport clearly demonstrate the versatility of our approach.
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Figure 12: Transport results for the solid-body rotation test on the sphere, for two revolutions (1920 time steps) on a 0.75◦

mesh. The MVMT-a results provide a qualitatively better match to the initial conditions than the FCR results.
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